Edexcel AS and A Level Modular Mathematics

Exercise A, Question 1

Question:

The curve \mathbb{C} , with equation $y = x^2 \ln x$, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7)

Solution:

$$y = x^2 \ln x, x > 0$$

Differentiate as a product:

$$\frac{dy}{dx} = x^2 \times \frac{1}{x} + 2x \ln x = x + 2x \ln x = x (1 + 2 \ln x)$$

$$\frac{dy}{dx} = 0$$
 \Rightarrow 1 + 2 ln $x = 0$ as $x > 0$

$$\Rightarrow$$
 2 ln $x = -1$

$$\Rightarrow$$
 ln $x = -\frac{1}{2}$

$$\Rightarrow x = e^{-\frac{1}{2}}$$

Substituting $x = e^{-\frac{1}{2}}$, in $y = x^2 \ln x$

$$\Rightarrow$$
 $y = (e^{-\frac{1}{2}})^2 \ln e^{-\frac{1}{2}} = -\frac{1}{2}e^{-1}$

So coordinates are $\left(e^{-\frac{1}{2}}, -\frac{1}{2}e^{-1}\right)$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 2

Question:

$$f(x) = e^{2x-1}, x \ge 0$$

The curve \mathbb{C} with equation y = f(x) meets the y-axis at \mathbb{P} .

The tangent to **C** at P crosses the *x*-axis at Q.

- (a) Find, to 3 decimal places, the area of triangle POQ, where O is the origin. (5) The line y = 2 intersects C at the point R.
- (b) Find the exact value of the x-coordinate of R. (3)

Solution:

(a) C meets y-axis where
$$x = 0$$

$$\Rightarrow$$
 $y = e^{-1}$

Find gradient of curve at P.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x-1}$$

At
$$x = 0$$
, $\frac{dy}{dx} = 2e^{-1}$

Equation of tangent is $y - e^{-1} = 2e^{-1}x$

This meets x-axis at Q, where y = 0

$$\Rightarrow$$
 $Q \equiv \left(-\frac{1}{2}, 0 \right)$

Area of
$$\triangle$$
 POQ = $\frac{1}{2} \times \frac{1}{2} \times e^{-1} = \frac{1}{4}e^{-1} = 0.092$

(b) At R,
$$y = 2 \implies 2 = e^{2x - 1}$$

$$\Rightarrow$$
 2x - 1 = ln 2

$$\Rightarrow$$
 2x = 1 + ln 2

$$\Rightarrow \quad x = \frac{1}{2} (1 + \ln 2)$$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 3

Question:

$$f(x) = \frac{3x}{x+1} - \frac{x+7}{x^2-1}, x > 1$$

- (a) Show that f (x) = $3 \frac{4}{x-1}$, x > 1. (5)
- (b) Find $f^{-1}(x)$. (4)
- (c) Write down the domain of $f^{-1}(x)$. (1)

Solution:

(a)
$$\frac{3x}{x+1} - \frac{x+7}{(x+1)(x-1)}, x > 1$$

$$\equiv \frac{3x(x-1) - (x+7)}{(x+1)(x-1)}$$

$$\equiv \frac{3x^2 - 4x - 7}{(x+1)(x-1)}$$

$$\equiv \frac{(3x-7)(x+1)}{(x+1)(x-1)}$$

$$\equiv \frac{3x-7}{x-1}$$

$$\equiv \frac{3(x-1) - 4}{x-1}$$

$$\equiv 3 - \frac{4}{x-1}$$

(b) Let
$$y = 3 - \frac{4}{x-1}$$

$$\Rightarrow \frac{4}{x-1} = 3 - y$$

$$\Rightarrow \frac{x-1}{4} = \frac{1}{3-y}$$

$$\Rightarrow x-1 = \frac{4}{3-y}$$

$$\Rightarrow x = 1 + \frac{4}{3 - y} \text{ or } \frac{7 - y}{3 - y}$$
So f⁻¹ (x) = 1 + $\frac{4}{3 - x} \text{ or } \frac{7 - x}{3 - x}$

(c) Domain of $f^{-1}(x)$ is the range of f(x).

$$x > 1$$
 \Rightarrow $\frac{4}{x-1} > 0$ \Rightarrow $f(x) = 3 - \frac{4}{x-1} < 3$

So the domain of $f^{-1}(x)$ is x < 3

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 4

Question:

(a) Sketch, on the same set of axes, for x > 0, the graphs of

$$y = -1 + \ln 3x$$
 and $y = \frac{1}{x}(2)$

The curves intersect at the point P whose *x*-coordinate is *p*. Show that

- (b) p satisfies the equation p ln 3p p 1 = 0 (1)
- (c) 1 (2)

The iterative formula

$$x_{n+1} = \frac{1}{3}e^{\left(1 + \frac{1}{x_n}\right)}, x_0 = 2$$

is used to find an approximation for p.

- (d) Write down the values of x_1 , x_2 , x_3 and x_4 giving your answers to 4 significant figures. (3)
- (e) Prove that p = 1.66 correct to 3 significant figures. (2)

Solution:

- (a) **x**
- (b) At P, $-1 + \ln 3p = \frac{1}{p}$ $\Rightarrow -p + p \ln 3p = 1$ $\Rightarrow p \ln 3p - p - 1 = 0$
- (c) Let f (p) $\equiv p \ln 3p p 1$ f (1) $= \ln 3 2 = -0.901...$

$$f(2) = 2 \ln 6 - 3 = +0.5835...$$

Sign change implies root between 1 and 2, so 1 .

(d)
$$x_{n+1} = \frac{1}{3}e^{\left(1 + \frac{1}{x_n}\right)}, x_0 = 2$$

$$x_1 = \frac{1}{3}e^{\frac{3}{2}} = 1.494 \text{ (4 s.f.)}$$

 $x_2 = 1.770 \text{ (4 s.f.)}$
 $x_3 = 1.594 \text{ (4 s.f.)}$
 $x_4 = 1.697 \text{ (4 s.f.)}$
(e) f (1.665) = +0.013
f (1.655) = -0.003
 \Rightarrow root between 1.655 and 1.665
So $p = 1.66 \text{ (3 s.f.)}$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 5

Question:

The curve C_1 has equation

$$y = \cos 2x - 2 \sin^2 x$$

The curve C_2 has equation $y = \sin 2x$

(a) Show that the x-coordinates of the points of intersection of ${\bf C}_1$ and ${\bf C}_2$ satisfy the equation

$$2 \cos 2x - \sin 2x = 1$$
 (3)

- (b) Express 2 cos $2x \sin 2x$ in the form $R \cos (2x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$, giving the exact value of R and giving α in radians to 3 decimal places. (4)
- (c) Find the x-coordinates of the points of intersection of C_1 and C_2 in the interval $0 \le x < \pi$, giving your answers in radians to 2 decimal places. (5)

Solution:

(a) Where C_1 and C_2 meet

$$\cos 2x - 2 \sin^2 x = \sin 2x$$
Using $\cos 2x \equiv 1 - 2 \sin^2 x \implies -2 \sin^2 x \equiv \cos 2x - 1$
So $\cos 2x + (\cos 2x - 1) = \sin 2x$

$$\implies 2 \cos 2x - \sin 2x = 1$$

(b) Let 2 cos $2x - \sin 2x \equiv R \cos (2x + \alpha)$ $\equiv R \cos 2x \cos \alpha - R \sin 2x \sin \alpha$

Compare:
$$R \cos \alpha = 2$$
, $R \sin \alpha = 1$

Divide:
$$\tan \alpha = \frac{1}{2} \implies \alpha = 0.464 (3 \text{ d.p.})$$

Square and add:
$$R^2$$
 ($\cos^2 \alpha + \sin^2 \alpha$) = $2^2 + 1^2 = 5$
 $\Rightarrow R = \sqrt{5}$

So 2 cos
$$2x - \sin 2x \equiv \sqrt{5} \cos (2x + 0.464)$$

(c)
$$2 \cos 2x - \sin 2x = 1$$

$$\Rightarrow \sqrt{5} \cos(2x + 0.464) = 1$$

$$\Rightarrow \cos\left(2x + 0.464\right) = \frac{1}{\sqrt{5}}$$

$$\Rightarrow 2x + 0.464 = 1.107, 5.176 \quad 0.464 \le 2x + 0.464 < 6.747$$

$$\Rightarrow 2x = 0.643, 4.712$$

$$\Rightarrow x = 0.32, 2.36 (2 \text{ d.p.})$$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 6

Question:

(a) Given that $y = \ln \sec x$, $-\frac{\pi}{2} < x \le 0$, use the substitution $u = \sec x$, or otherwise, to show that $\frac{dy}{dx} = \tan x$. (3)

The curve **C** has equation $y = \tan x + \ln \sec x$, $-\frac{\pi}{2} < x \le 0$. At the point P on **C**, whose x-coordinate is p, the gradient is 3.

- (b) Show that tan p = -2. (6)
- (c) Find the exact value of $\sec p$, showing your working clearly. (2)
- (d) Find the y-coordinate of P, in the form $a + k \ln b$, where a, k and b are rational numbers. (2)

Solution:

(a)
$$y = \ln \sec x$$

Let
$$u = \sec x \implies \frac{du}{dx} = \sec x \tan x$$

so
$$y = \ln u \implies \frac{dy}{du} = \frac{1}{u}$$

Using
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{u} \times \sec x \tan x = \frac{1}{\sec x} \sec x \tan x = \tan x$$

(b)
$$\frac{dy}{dx} = \sec^2 x + \tan x$$

So
$$\sec^2 p + \tan p = 3$$

$$\Rightarrow$$
 1 + tan²p + tan p = 3

$$\Rightarrow \tan^2 p + \tan p - 2 = 0$$

$$\Rightarrow$$
 (tan $p-1$) (tan $p+2$) = 0

As
$$-\frac{\pi}{2} < x \le 0$$
 (4th quadrant), tan p is negative

So
$$\tan p = -2$$

(c)
$$\sec^2 p = 1 + \tan^2 p = 5 \implies \sec p = + \sqrt{5}$$
 (4th quadrant)

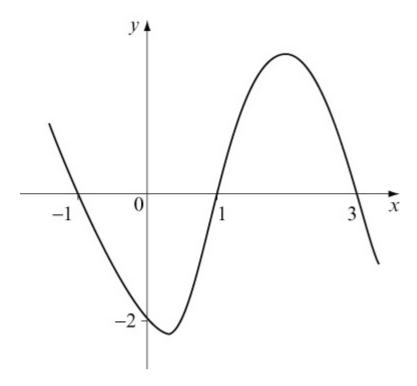
(d)
$$y = \ln \sqrt{5} + (-2) = -2 + \frac{1}{2} \ln 5$$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 7

Question:

The diagram shows a sketch of part of the curve with equation y = f(x). The curve has no further turning points.



On separate diagrams show a sketch of the curve with equation

(a)
$$y = 2f(-x)$$
 (3)

(b)
$$y = |f(2x)|$$
 (3)

In each case show the coordinates of points in which the curve meets the coordinate axes.

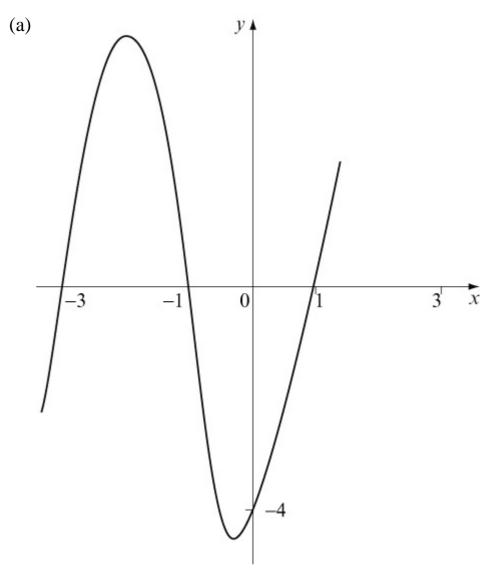
The function g is given by

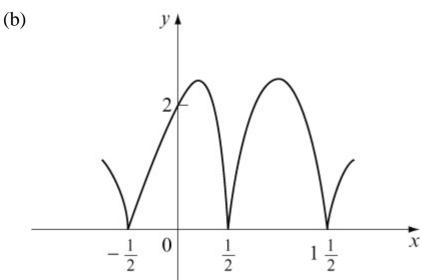
$$g: x \rightarrow |x+1| - k, x \in \mathbb{R}, k > 1$$

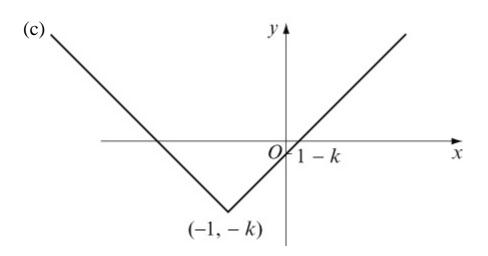
- (c) Sketch the graph of g, showing, in terms of k, the y-coordinate of the point of intersection of the graph with the y-axis. (3) Find, in terms of k,
- (d) the range of g(x) (1)
- (e) gf(0) (2)

(f) the solution of g (x) = x(3)

Solution:







(d) g (x)
$$\geq -k$$

(e) gf (0) = g (-2) =
$$|-1| - k = 1 - k$$

(f)
$$y = x$$
 meets $y = |x + 1| - k$
where $x = -(x + 1) - k$
 $\Rightarrow 2x = -(1 + k)$
 $\Rightarrow x = -\frac{1+k}{2}$